Demonstratio Mathematica (Feb 2023)

On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group

  • Jleli Mohamed

DOI
https://doi.org/10.1515/dema-2022-0193
Journal volume & issue
Vol. 56, no. 1
pp. 283 – 300

Abstract

Read online

We investigate the existence and nonexistence of nonnegative radial solutions to exterior problems of the form ΔHmu(q)+λψ(q)K(r(q))f(r2−Q(q),u(q))=0{\Delta }_{{{\mathbb{H}}}^{m}}u\left(q)+\lambda \psi \left(q)K\left(r\left(q))f\left({r}^{2-Q}\left(q),u\left(q))=0 in B1c{B}_{1}^{c}, under the Dirichlet boundary conditions u=0u=0 on ∂B1\partial {B}_{1} and limr(q)→∞u(q)=0{\mathrm{lim}}_{r\left(q)\to \infty }u\left(q)=0. Here, λ≥0\lambda \ge 0 is a parameter, ΔHm{\Delta }_{{{\mathbb{H}}}^{m}} is the Kohn Laplacian on the Heisenberg group Hm=R2m+1{{\mathbb{H}}}^{m}={{\mathbb{R}}}^{2m+1}, m>1m\gt 1, Q=2m+2Q=2m+2, B1{B}_{1} is the unit ball in Hm{{\mathbb{H}}}^{m}, B1c{B}_{1}^{c} is the complement of B1{B}_{1}, and ψ(q)=∣z∣2r2(q)\psi \left(q)=\frac{| z{| }^{2}}{{r}^{2}\left(q)}. Namely, under certain conditions on KK and ff, we show that there exists a critical parameter λ∗∈(0,∞]{\lambda }^{\ast }\in \left(0,\infty ] in the following sense. If 0≤λ<λ∗0\le \lambda \lt {\lambda }^{\ast }, the above problem admits a unique nonnegative radial solution uλ{u}_{\lambda }; if λ∗<∞{\lambda }^{\ast }\lt \infty and λ≥λ∗\lambda \ge {\lambda }^{\ast }, the problem admits no nonnegative radial solution. When 0≤λ<λ∗0\le \lambda \lt {\lambda }^{\ast }, a numerical algorithm that converges to uλ{u}_{\lambda } is provided and the continuity of uλ{u}_{\lambda } with respect to λ\lambda , as well as the behavior of uλ{u}_{\lambda } as λ→λ∗−\lambda \to {{\lambda }^{\ast }}^{-}, are studied. Moreover, sufficient conditions on the the behavior of f(t,s)f\left(t,s) as s→∞s\to \infty are obtained, for which λ∗=∞{\lambda }^{\ast }=\infty or λ∗<∞{\lambda }^{\ast }\lt \infty . Our approach is based on partial ordering methods and fixed point theory in cones.

Keywords