Engineering Science and Technology, an International Journal (Feb 2019)
Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field
Abstract
Electro-kinetic peristaltic flow of Eyring-Powell nanofluid has been investigated in this paper. The flow is considered to take place in an asymmetric wavy micro-channel. The system is supposed to be acted on by an external magnetic field and to be exposed to Joule heating. Velocity and temperature of the fluid have been calculated by using Debye-Hückel approximation. Flow of the nanofluid is considered to take place under the combined action of an external transverse magnetic field and a horizontal static electric field. Considering low Reynolds number and using long wavelength approximation, variations of axial velocity, pressure gradient, wall shear stress and temperature profiles have been investigated both analytically and numerically by using efficient mathematical softwares. The peristaltic pumping characteristics and the trapping of fluid bolus have also been thoroughly examined in the light of electroosmosis. The study shows that even mild electroosmosis can cause higher pressure gradient in the axial direction. It bears the promise of important application to weak peristaltic transport modulation for EMHD nanofluid flows. The study further reveals that the occurrence of trapping can be controlled by suitably adjusting the magnitude of the electric field. The study also reports the thermal transport mechanism in the fluid, under the action of Joule heating and viscous energy dissipation. It shows that an increase in the volume fraction of the nanoparticles in the fluid can considerably enhance the momentum transport in the core region of the microchannel. Keywords: EMHD peristaltic transport, Eyring-Powell nanofluid, Debye-Hückel approximation, Heat transfer, Joule heating