Saudi Journal of Biological Sciences (Dec 2023)

Dose-dependent anti-hyperglycemic & anti-dyslipidemic potential of aqueous leaves extract of Typha elephantina in-vivo and in-vitro

  • Bashir Ahmad,
  • Ali Muhammad Yousafzai,
  • Nasrullah Khan,
  • Ahmed M. Hussein,
  • Amr Kataya,
  • Christian R. Studenik,
  • Mostafa A. Abdel-Maksoud

Journal volume & issue
Vol. 30, no. 12
p. 103868

Abstract

Read online

Diabetes mellitus is among the fundamental causes of illness and millions of deaths around the globe are directly attributed to it each year. Current antidiabetic medications often lack sustained glycemic control and carry significant risks of side effects. As a result, the use of plant-based treatments has gained popularity. In this experimental study, we evaluated the aqueous extracts (LQE) of Typha elephantina (also known as Elephant grass) leaves collected from freshwater marshes, for their potential anti-hyperglycemic and anti-hyperlipidemic antioxidant effects in healthy streptozotocin caused diabetic-mice. We employed glucose adsorption tests at different glucose levels and glucose diffusion tests to assess the in-vitro antidiabetic action of plant extract. For the in-vivo trail, we measured fasting blood glucose (FBG), glucose tolerance (GTT), as well as long-term anti-diabetic, anti-hyperlipidemic, and antioxidant activities. Our results from the glucose diffusion test indicated that the extract was highly effective at both low glucose concentrations (5 mmol L) and high glucose concentrations (100 mmol L). However, the glucose-diffusion ability reached its peaked at an excessively high dosage of the aqueous extract, suggesting a dose-related effect. Similarly, we observed that high doses of TEL.AQ extracts (400 mg/kg body weight) significantly reduced blood glucose levels in healthy mice during the glucose tolerance test (GTT) at 3 h and fasting blood glucose studies (FBG) at 6 h. Furthermore, the high-dose TEL.AQ extract effectively reduced liver-related serum markers and blood-glucose concentration (BGC) in severely chronic diabetic rats. The extract dosage also influenced lipid profile, conjugate and unconjugated bilirubin levels, cholesterol, triglycerides, HDL, and total bilirubin levels. Additionally, after administering a high extract dose, we observed considerable improvement in the liver homogenate markers CAT, POD, and SOD. In contrast, the extract at a low dosage (100 mg/kg), showed minimal, while a moderate dose (200 mg/kg), yielded promising results.

Keywords