International Journal of Molecular Sciences (Aug 2017)

miR-145-5p Suppresses Tumor Cell Migration, Invasion and Epithelial to Mesenchymal Transition by Regulating the Sp1/NF-κB Signaling Pathway in Esophageal Squamous Cell Carcinoma

  • Li-Li Mei,
  • Wen-Jun Wang,
  • Yun-Tan Qiu,
  • Xiu-Feng Xie,
  • Jie Bai,
  • Zhi-Zhou Shi

DOI
https://doi.org/10.3390/ijms18091833
Journal volume & issue
Vol. 18, no. 9
p. 1833

Abstract

Read online

MicroRNAs (miRNAs) play important roles in the progression of human cancer. Although previous reports have shown that miR-145-5p is down-regulated in esophageal squamous cell carcinoma (ESCC), the roles and mechanisms of down-regulation of miR-145-5p in ESCC are still largely unknown. Using microRNA microarray and Gene Expression Omnibus (GEO) datasets, we confirmed that miR-145-5p was down-regulated in ESCC tissues. In vitro assays revealed that ectopic miR-145-5p expression repressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT). miR-145-5p also reduced the expressions of cell cycle genes including cyclin A2 (CCNA2), cyclin D1 (CCND1) and cyclin E1 (CCNE1), the EMT-associated transcription factor Slug, and matrix metalloproteinases (MMPs) including MMP2, MMP7 and MMP13. Furthermore, miR-145-5p mimics reduced candidate target gene specificity protein 1 (Sp1) and nuclear factor κ B (NF-κB) (p65) both in mRNA and protein levels. Knockdown of Sp1 phenocopied the effects of miR-145-5p overexpression on cell cycle regulators, EMT and the expression of NF-κB (p65). Importantly, inhibition of the NF-κB signaling pathway or knockdown of NF-κB (p65) phenocopied the effects of miR-145-5p on the migration, invasion and EMT of ESCC cells. In conclusion, our results suggested that miR-145-5p plays tumor-suppressive roles by inhibiting esophageal cancer cell migration, invasion and EMT through regulating the Sp1/NF-κB signaling pathway.

Keywords