ITM Web of Conferences (Jan 2016)

Improved Collaborative Filtering Algorithm using Topic Model

  • Liu Na,
  • Lu Ying,
  • Tang Xiao-Jun,
  • Wang Hai-Wen,
  • Xiao Peng,
  • Li Ming-Xia

DOI
https://doi.org/10.1051/itmconf/20160705008
Journal volume & issue
Vol. 7
p. 05008

Abstract

Read online

Collaborative filtering algorithms make use of interactions rates between users and items for generating recommendations. Similarity among users or items is calculated based on rating mostly, without considering explicit properties of users or items involved. In this paper, we proposed collaborative filtering algorithm using topic model. We describe user-item matrix as document-word matrix and user are represented as random mixtures over item, each item is characterized by a distribution over users. The experiments showed that the proposed algorithm achieved better performance compared the other state-of-the-art algorithms on Movie Lens data sets.