Laboratoire d’Informatique Signal Image Telecommunications et Electronique, Institut Supérieur d’Électronique de Paris (ISEP), Paris, France
This paper introduces SIMPLY+, an advanced Spin-Transfer Torque Magnetic Random-Access Memory (STT-MRAM)-based Logic-in-Memory (LIM) architecture that evolves from the previously proposed smart material implication (SIMPLY) logic scheme. More specifically, the latter is enhanced by incorporating additional circuitry to enhance the reliability of preliminary read operations. In this study, the proposed architecture is benchmarked against its conventional counterpart. Obtained results show a significant improvement in terms of reliability, i.e., the nominal read margin (RM) by a factor of $\sim 3 - 4\times $ and accordingly the bit error rate (BER) by more than four orders of magnitude. These improvements come at minimal cost in terms of circuit area and complexity compared to the conventional SIMPLY design. Overall, this research establishes SIMPLY+ as a promising solution for the design of reliable and energy-efficient in-memory computing architectures.