Science and Engineering of Composite Materials (Nov 2016)

Effect of polyarylene ether nitrile on the curing behaviors and properties of bisphthalonitrile

  • Chen Zhiran,
  • Lei Yajie,
  • Tang Hailong,
  • Liu Xiaobo

DOI
https://doi.org/10.1515/secm-2013-0235
Journal volume & issue
Vol. 23, no. 6
pp. 579 – 588

Abstract

Read online

The 2,2-bis[4-(3,4)-dicyanophenoxy phenyl]propane (BAPh)/polyarylene ether nitrile (PEN-OH) prepolymers and polymers were prepared by heat polymerization. Firstly, BAPh/PEN-OH systems were characterized using differential scanning calorimetry, dynamic rheological analysis, and thermal gravimetric analysis. The results revealed that the polymerization reaction can be controlled by various concentrations of PEN-OH and postcuring temperatures, and BAPh/PEN-OH prepolymers had low curing temperatures (229.3–300.4°C), large processing windows (∼106.5°C) with low melt viscosities, and excellent thermal stabilities. Then, the polymerization reaction and surface structures of BAPh/PEN-OH systems were investigated using Fourier transform infrared and scanning electron microscopy, respectively. The interpenetrating polymer networks were found in BAPh/PEN-OH polymers, suggesting that the addition of PEN-OH can not only promote the curing behaviors of BAPh but also increase the toughness of the polymers. The flexure strength and modulus of BAPh/PEN-OH polymers increased with the introduction of PEN-OH. The dielectric properties of BAPh/PEN-OH polymers were investigated, which had little dependence on the frequency. BAPh/PEN-OH systems can be used as a good candidate for high-performance polymeric materials.

Keywords