Journal of Food Protection (Dec 2024)

Detection of Escherichia coli Using Bacteriophage T7 and Analysis of Excitation‑Emission Matrix Fluorescence Spectroscopy

  • Nicharee Wisuthiphaet,
  • Huanle Zhang,
  • Xin Liu,
  • Nitin Nitin

Journal volume & issue
Vol. 87, no. 12
p. 100396

Abstract

Read online

Conventional detection methods require the isolation and enrichment of bacteria, followed by molecular, biochemical, or culture-based analysis. To address some of the limitations of conventional methods, this study develops a machine learning (ML) approach to analyze the excitation-emission matrix (EEM) fluorescence data generated based on bacteriophage T7 and Escherichia coli interactions for in-situ detection of live bacteria in the presence of fresh produce homogenate. We trained classification models using various ML algorithms based on the 3-D EEM data generated with bacteria and their interactions with a T7 phage. These ML algorithms, including linear Support Vector Classifier (SVC) and Random Forest (RF), demonstrate high accuracy (>0.85) for detecting E. coli at 102 CFU/ml concentration within 6 h. Additionally, these ML models can differentiate among different E. coli concentration levels. For example, the Gaussian Process model achieved an accuracy of 92% in detecting different concentration levels of live E. coli. Application of these ML methods to detect E. coli in spinach homogenate yielded an accuracy of 89% using the linear-SVC model. Furthermore, feature selection techniques were employed to reduce the dimensionality of the data, revealing that only six features were necessary for achieving classification accuracy (>0.85) of spinach homogenate samples containing 102 CFU/ml of E. coli. These findings highlight the potential of this novel bacterial detection methodology, offering rapid, specific, and efficient solutions for applications in food safety and environmental monitoring.

Keywords