Sensors (May 2021)

Achieving Precise Spectral Analysis and Imaging Simultaneously with a Mode-Resolved Dual-Comb Interferometer

  • Zejiang Deng,
  • Yang Liu,
  • Zhiwei Zhu,
  • Daping Luo,
  • Chenglin Gu,
  • Zhong Zuo,
  • Gehui Xie,
  • Wenxue Li

DOI
https://doi.org/10.3390/s21093166
Journal volume & issue
Vol. 21, no. 9
p. 3166

Abstract

Read online

In this paper, we report a scheme providing precise spectral analysis and surface imaging, simultaneously, based on a high-coherence dual-comb interferometer. With two tightly phase-locking frequency combs, we demonstrate a high-coherence dual-comb interferometer (DCI) covering 188 to 195 THz (1538.5 to 1595.7 nm) with comb-tooth resolution and a max spectral signal-to-noise ratio (SNR) of 159.7. The combination of the high-coherence dual-comb spectrometer and a reference arm simultaneously enables gas absorption spectroscopy and for the absolute distance information to be obtained in one measurement. As a demonstration, we measure the spectrum of CO2 and CO. From the same interferograms, we demonstrate that distance measurement, by time-of-flight (TOF), can be resolved with an rms precision of 0.53 μm after averaging 140 images and a measurement time of 1 s. Finally, we demonstrate that non-contact surface imaging, using 2D mechanical scanning, reaches lateral resolution of 40 μm. The longitudinal precision is 0.68 μm with a measurement time of 0.5 s. It verifies that DCS has the potential to be applied in standoff detection, environmental pollution monitors, and remote sensing.

Keywords