Scientific Reports (Dec 2021)

Short term but highly efficient Cas9 expression mediated by excisional system using adenovirus vector and Cre

  • Sayaka Nagamoto,
  • Miyuki Agawa,
  • Emi Tsuchitani,
  • Kazunori Akimoto,
  • Saki Kondo Matsushima,
  • Yumi Kanegae

DOI
https://doi.org/10.1038/s41598-021-03803-w
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Genome editing techniques such as CRISPR/Cas9 have both become common gene engineering technologies and have been applied to gene therapy. However, the problems of increasing the efficiency of genome editing and reducing off-target effects that induce double-stranded breaks at unexpected sites in the genome remain. In this study, we developed a novel Cas9 transduction system, Exci-Cas9, using an adenovirus vector (AdV). Cas9 was expressed on a circular molecule excised by the site-specific recombinase Cre and succeeded in shortening the expression period compared to AdV, which expresses the gene of interest for at least 6 months. As an example, we chose hepatitis B, which currently has more than 200 million carriers in the world and frequently progresses to liver cirrhosis or hepatocellular carcinoma. The efficiencies of hepatitis B virus genome disruption by Exci-Cas9 and Cas9 expression by AdV directly (Avec) were the same, about 80–90%. Furthermore, Exci-Cas9 enabled cell- or tissue-specific genome editing by expressing Cre from a cell- or tissue-specific promoter. We believe that Exci-Cas9 developed in this study is useful not only for resolving the persistent expression of Cas9, which has been a problem in genome editing, but also for eliminating long-term DNA viruses such as human papilloma virus.