Archives of Foundry Engineering (Sep 2023)

Utilizing of the Statistical Analysis for Evaluation of the Properties of Green Sand Mould

  • Dheya Abdulamer

DOI
https://doi.org/10.24425/afe.2023.146664
Journal volume & issue
Vol. vol. 23, no. No 3
pp. 67 – 73

Abstract

Read online

A statistical approach was conducted to investigate effect of independent factors of the mixing time compactability and bentonite percentage on dependent variables of permeability, compression and tensile strength of sand mould properties. Using statistical method save time in estimating the dependent variables that affect the moulding properties of green sand and the optimal levels of each factor that produce the desired results. The results yielded indicate that there are variations in the effects of these factors and their interactions on different properties of green sand. The outcomes obtained a range of permeability values, with the highest and lowest numbers being 125 and 84. The sand exhibited high values of tensile and compressive strength measuring at 0.33N/cm2 and 17.67N/cm2. Conversely it demonstrated low levels of tensile and compressive strength reaching 0.14N/cm2 and 9.32N/cm2. These results suggest that the moulding factors and their interactions have an important role in determining properties of the green sand. ANOVA was used to assess effect of various factors on different properties of the green sand. The results obtained suggest that compactability factor play a significant effect on permeability, the mixing time or bentonite factor has a significant effect on the compressive strength and mixing time or compactability factor has a significant impact on the tensile strength with a significance level lower than 5%. It is found that neither the mixing time nor the amount of bentonite used in the green sand mix has a significant impact on its permeability. Compactability of the green sand does not has a significant effect on the compressive strength. Bentonite used in green sand mix does not have a significant impact on its tensile strength.

Keywords