Lipid peroxidation as a hallmark of severity in COVID-19 patients
Marta Martín-Fernández,
Rocío Aller,
María Heredia-Rodríguez,
Esther Gómez-Sánchez,
Pedro Martínez-Paz,
Hugo Gonzalo-Benito,
Laura Sánchez-de Prada,
Óscar Gorgojo,
Irene Carnicero-Frutos,
Eduardo Tamayo,
Álvaro Tamayo-Velasco
Affiliations
Marta Martín-Fernández
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain
Rocío Aller
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Gastroenterology Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
María Heredia-Rodríguez
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Salamanca, 37007 Salamanca, Spain; Corresponding author. Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Salamanca, 37007 Salamanca, Spain.
Esther Gómez-Sánchez
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Corresponding author. Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain.
Pedro Martínez-Paz
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain
Hugo Gonzalo-Benito
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL), 42002 Soria, Spain
Laura Sánchez-de Prada
Department of Microbiology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
Óscar Gorgojo
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL), 42002 Soria, Spain
Irene Carnicero-Frutos
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL), 42002 Soria, Spain
Eduardo Tamayo
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
Álvaro Tamayo-Velasco
BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Haematology and Hemotherapy Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
Background: Oxidative stress may be a key player in COVID-19 pathogenesis due to its significant role in response to infections. A defective redox balance has been related to viral pathogenesis developing a massive induction of cell death provoked by oxidative stress. The aim of this study is to perform a complete oxidative stress profile evaluation regarding antioxidant enzymes, total antioxidant capacity and oxidative cell damage in order to characterize its role in diagnosis and severity of this disease. Methods: Blood samples were obtained from 108 COVID-19 patients and 28 controls and metabolites representative of oxidative stress were assessed. The association between lipid peroxidation and 28-day intubation/death risk was evaluated by multivariable regression analysis. Probability of intubation/death to day-28 was analyzed by using Kaplan-Meier curves and tested with the log-rank test. Results: Antioxidant enzymes (Superoxide dismutase (SOD) and Catalase) and oxidative cell damage (Carbonyl and Lipid peroxidation (LPO)) levels were significantly higher in COVID-19 patients while total antioxidant capacity (ABTS and FRAP) levels were lower in these patients. The comparison of oxidative stress molecules’ levels across COVID-19 severity revealed that only LPO was statistically different between mild and intubated/death COVID-19 patients. COX multivariate regression analysis identified LPO levels over the OOP (LPO>1948.17 μM) as an independent risk factor for 28-day intubation/death in COVID-19 patients [OR: 2.57; 95% CI: 1.10–5.99; p = 0.029]. Furthermore, Kaplan-Meier curve analysis revealed that COVID-19 patients showing LPO levels above 1948.17 μM were intubated or died 8.4 days earlier on average (mean survival time 15.4 vs 23.8 days) when assessing 28-day intubation/death risk (p < 0.001). Conclusion: These findings deepen our knowledge of oxidative stress status in SARS-CoV-2 infection, supporting its important role in COVID-19. In fact, higher lipid peroxidation levels are independently associated to a higher risk of intubation or death at 28 days in COVID-19 patients.