PLoS ONE (Jan 2014)

Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization.

  • Vladimer Darsalia,
  • Sansan Hua,
  • Martin Larsson,
  • Carina Mallard,
  • David Nathanson,
  • Thomas Nyström,
  • Åke Sjöholm,
  • Maria E Johansson,
  • Cesare Patrone

DOI
https://doi.org/10.1371/journal.pone.0103114
Journal volume & issue
Vol. 9, no. 8
p. e103114

Abstract

Read online

Exendin-4 is a glucagon-like receptor 1 agonist clinically used against type 2 diabetes that has also shown neuroprotective effects in experimental stroke models. However, while the neuroprotective efficacy of Exendin-4 has been thoroughly investigated if the pharmacological treatment starts before stroke, the therapeutic potential of the Exendin-4 if the treatment starts acutely after stroke has not been clearly determined. Further, a comparison of the neuroprotective efficacy in normal and aged diabetic mice has not been performed. Finally, the cellular mechanisms behind the efficacy of Exendin-4 have been only partially studied. The main objective of this study was to determine the neuroprotective efficacy of Exendin-4 in normal and aged type 2 diabetic mice if the treatment started after stroke in a clinically relevant setting. Furthermore we characterized the Exendin-4 effects on stroke-induced neuroinflammation. Two-month-old healthy and 14-month-old type 2 diabetic/obese mice were subjected to middle cerebral artery occlusion. 5 or 50 µg/kg Exendin-4 was administered intraperitoneally at 1.5, 3 or 4.5 hours thereafter. The treatment was continued (0.2 µg/kg/day) for 1 week. The neuroprotective efficacy was assessed by stroke volume measurement and stereological counting of NeuN-positive neurons. Neuroinflammation was determined by gene expression analysis of M1/M2 microglia subtypes and pro-inflammatory cytokines. We show neuroprotective efficacy of 50 µg/kg Exendin-4 at 1.5 and 3 hours after stroke in both young healthy and aged diabetic/obese mice. The 5 µg/kg dose was neuroprotective at 1.5 hour only. Proinflammatory markers and M1 phenotype were not impacted by Exendin-4 treatment while M2 markers were significantly up regulated. Our results support the use of Exendin-4 to reduce stroke-damage in the prehospital/early hospitalization setting irrespectively of age/diabetes. The results indicate the polarization of microglia/macrophages towards the M2 reparative phenotype as a potential mechanism of neuroprotection.