Few-Layer Graphene-Based Nanofluids with Enhanced Thermal Conductivity
Samah Hamze,
Nawal Berrada,
David Cabaleiro,
Alexandre Desforges,
Jaafar Ghanbaja,
Jérôme Gleize,
Dominique Bégin,
Florentin Michaux,
Thierry Maré,
Brigitte Vigolo,
Patrice Estellé
Affiliations
Samah Hamze
Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, F-35000 Rennes, France
Nawal Berrada
Institut Jean Lamour UMR7198, CNRS, Université de Lorraine, F-54000 Nancy, France
David Cabaleiro
Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, F-35000 Rennes, France
Alexandre Desforges
Institut Jean Lamour UMR7198, CNRS, Université de Lorraine, F-54000 Nancy, France
Jaafar Ghanbaja
Institut Jean Lamour UMR7198, CNRS, Université de Lorraine, F-54000 Nancy, France
Jérôme Gleize
Laboratoire de Chimie et Physique Approche Multi-échelles des Milieux Complexes, Université de Lorraine, F-57000 Metz, France
Dominique Bégin
Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES) CNRS-University of Strasbourg, 25, rue Becquerel, 67087 Strasbourg, CEDEX, France
Florentin Michaux
Laboratoire d’Ingénierie des Biomolécules, Université de Lorraine, 2, avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
Thierry Maré
Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, F-35000 Rennes, France
Brigitte Vigolo
Institut Jean Lamour UMR7198, CNRS, Université de Lorraine, F-54000 Nancy, France
Patrice Estellé
Laboratoire de Génie Civil et Génie Mécanique, Université de Rennes, F-35000 Rennes, France
High-quality graphene is an especially promising carbon nanomaterial for developing nanofluids for enhancing heat transfer in fluid circulation systems. We report a complete study on few layer graphene (FLG) based nanofluids, including FLG synthesis, FLG-based nanofluid preparation, and their thermal conductivity. The FLG sample is synthesized by an original mechanical exfoliation method. The morphological and structural characterization are investigated by both scanning and transmission electron microscopy and Raman spectroscopy. The chosen two-step method involves the use of thee nonionic surfactants (Triton X-100, Pluronic® P123, and Gum Arabic), a commercial mixture of water and propylene glycol and a mass content in FLG from 0.05 to 0.5%. The thermal conductivity measurements of the three FLG-based nanofluid series are carried out in the temperature range 283.15–323.15 K by the transient hot-wire method. From a modeling analysis of the nanofluid thermal conductivity behavior, it is finally shown that synergetic effects of FLG nanosheet size and thermal resistance at the FLG interface both have significant impact on the evidenced thermal conductivity enhancement.