Biophysica (Aug 2022)

Sodium Channels Involved in the Initiation of Action Potentials in Invertebrate and Mammalian Neurons

  • Daria Y Romanova,
  • Pavel M Balaban,
  • Evgeny S Nikitin

DOI
https://doi.org/10.3390/biophysica2030019
Journal volume & issue
Vol. 2, no. 3
pp. 184 – 193

Abstract

Read online

Living organisms react to external stimuli to adapt their activity to the environment for survival. Acquired information is encoded by neurons by action potentials (APs) in a series of discrete electrical events. Rapid initiation of the AP is critical for fast reactions and strongly relies on voltage-activated Na+-selective channels (NaVs), which are widely expressed by both invertebrate and vertebrate neurons. Intuitively, NaVs of higher mammals should be activated faster than those of any other species. In addition to improved NaV channel structure, central mammalian neurons also demonstrate a patterned distribution of specific types of NaV1 channels at and near the site of AP initiation within the axonal initial segment (AIS). The AIS has different types of fast Nav1 channels and is thought to provide the biological basis for efficient frequency coding of information. In the present work, we review data related to the channels underlying fast initiation of action potentials in vertebrates and invertebrates, along with their evolution, distribution, and known specific roles. Current research has established that all mammalian NaV1 (1.1–1.9) channels share a similar structure, with 4 conservative transmembrane D-domains with a highly homologous sequence, but significant differences in the length of the functional cytoplasmic linkers. Similarly, the structure of NaV1 channels in invertebrates is generally similar to that of mammals, but it shows high variability across the evolutionary tree in the length of the linkers. AP initiation in mammalian cortical neurons is mediated by NaV1.2 and NaV1.6 channels, whereas interneurons mostly rely on NaV1.1 channels in their firing. Although invertebrate NaV1 channels normally display relatively slow kinetics, their activation is fast enough to produce APs, even in simple animals such as Placozoa. Remarkably, fast sodium-based excitability is not limited to animals. Recently, a photosynthetic prokaryote has been found to show rapidly activated sodium currents provided by their independently evolved single D-domain EuKatB sodium channels.

Keywords