Journal of the Mechanical Behavior of Materials (Nov 2022)

Evaluation of the wettability of prepared anti-wetting nanocoating on different construction surfaces

  • Omar Mustafa H.,
  • Hussian Wissam A.,
  • Ahmed Mays A.

DOI
https://doi.org/10.1515/jmbm-2022-0260
Journal volume & issue
Vol. 31, no. 1
pp. 786 – 792

Abstract

Read online

Generally, the major problems of moisture damage are caused by wetting, and particularly in construction, which has led to extensive research for the production of hydrophobic (anti-wetting) coatings. The aim of this research is to prepare an anti-wetting (hydrophobic) nanocomposite coating for different construction surfaces (ceramic, brick and gypsum). Hydrophobic nanocomposite coating was synthesized using electrospinning technique. Polymethyl methacrylate and polystyrene (PS) solutions were prepared in different ratios and then separately reinforced with ZrO2 and ZnO nanoparticles. Contact angle, surface roughness, surface free energy and weathering effects were calculated for all specimens after being coated. All previously selected materials surfaces showed superhydrophobic and hydrophobic properties. The best results were obtained on ceramic surfaces after coating with PS/ZrO2. The water contact angle was 153° while the surface roughness was 0.491 µm and also showed the lowest surface free energy which was 5.5 mJ/m2. Weathering conditions tend to decrease the values of contact angle and this is due to the environmental effect of the weathering but they still have their hydrophobic properties. SEM test was used to determine the surface morphology and nanoparticle size for ceramic surfaces coated with PS and nano-ZrO2.

Keywords