Zoological Letters (Jun 2022)
Ancient rivers shaped the current genetic diversity of the wood mouse (Apodemus speciosus) on the islands of the Seto Inland Sea, Japan
Abstract
Abstract The current distributions of organisms have been shaped by both current and past geographical barriers. However, it remains unclear how past geographical factors—currently cryptic on the sea floor—affected the current distributions of terrestrial animals. Here, we examined the effects of currently cryptic ancient rivers on current genetic differentiation of the large Japanese wood mouse, Apodemus speciosus, which inhabits islands in the Seto Inland Sea, Japan. Genome-wide polymorphisms were identified by GRAS-Di (Genotyping by Random Amplicon Sequencing, Direct) analysis of 92 A. speciosus individuals. Maximum-likelihood analysis was performed with 94,142 single nucleotide polymorphisms (SNPs) identified by GRAS-Di analyses. Ancient rivers were visualized by Geographic Information System (GIS) channel analysis. Maximum-likelihood analysis showed strong support for the monophyly of each population in the islands in the Seto Inland Sea; it also showed close relationships between Innoshima-Ikuchijima, Ohmishima-Hakatajima-Oshima, Ohmishima-Hakatajima, Ohsakikamijima-Ohsakishimojima, Kamikamagarijima-Shimokamagarijima, and Kurahashijima-Etajima islands. The principal component analyses of the SNPs also supported these relationships. Furthermore, individuals from islands located on the east and west sides of the main stream of the ancient river were clustered on each side with strong support. These phylogenetic relationships were completely congruent with the paleogeographic relationships inferred from ancient rivers. In conclusion, the findings demonstrated that the current distribution of genetically distinct island lineages was shaped by ancient rivers that are currently submerged beneath the Seto Inland Sea, Japan.
Keywords