Metabolites (Feb 2021)

A Study of Blood Fatty Acids Profile in Hyperlipidemic and Normolipidemic Subjects in Association with Common <i>PNPLA3</i> and <i>ABCB1</i> Polymorphisms

  • Thomai Mouskeftara,
  • Antonis Goulas,
  • Despoina Ioannidou,
  • Charikleia Ntenti,
  • Dimitris Agapakis,
  • Andreana Assimopoulou,
  • Helen Gika

DOI
https://doi.org/10.3390/metabo11020090
Journal volume & issue
Vol. 11, no. 2
p. 90

Abstract

Read online

Adiponutrin (patatin-like phospholipase domain-containing 3; PNPLA3), encoded in humans by the PNPLA3 gene, is a protein associated with lipid droplet and endoplasmic reticulum membranes, where it is apparently involved in fatty acid redistribution between triglycerides and phospholipids. A common polymorphism of PNPLA3 (I148M, rs738409), linked to increased PNPLA3 presence on lipid droplets, is a strong genetic determinant of non-alcoholic fatty liver disease (NAFLD) and of its progression. P-glycoprotein (Pgp, MDR1—multidrug resistance protein 1, ABCB1—ATP-binding cassette sub-family B member 1), encoded by the ABCB1 gene, is another membrane protein implicated in lipid homeostasis and steatosis. In the past, common ABCB1 polymorphisms have been associated with the distribution of serum lipids but not with fatty acids (FA) profiles. Similarly, data on the effect of PNPLA3 I148M polymorphism on blood FAs are scarce. In this study, a gas chromatography-flame ionization detection (GC-FID) method was optimized, allowing us to analyze twenty FAs (C14: 0, C15: 0, C15: 1, C16: 0, C16: 1, C17: 0, C17: 1, C18: 0, C18: 1cis, C18: 2cis, C20: 0, C20: 1n9, C20: 2, C20: 3n6, C20: 4n6, C20: 5, C23: 0, C24: 0, C24: 1 and C22: 6) in whole blood, based on the indirect determination of the fatty acids methyl esters (FAMES), in 62 hyperlipidemic patients and 42 normolipidemic controls. FA concentrations were then compared between the different genotypes of the rs738409 and rs2032582 (ABCB1 G2677T) polymorphisms, within and between the hyperlipidemic and normolipidemic groups. The rs738409 polymorphism appears to exert a significant effect on the distribution of blood fatty acids, in a lipidemic and fatty acid saturation state-depending manner. The effect of rs2032582 was less pronounced, but the polymorphism did appear to affect the relative distribution of blood fatty acids between hyperlipidemic patients and normolipidemic controls.

Keywords