Meteorologische Zeitschrift (Jan 2015)

Finite-volume models with implicit subgrid-scale parameterization for the differentially heated rotating annulus

  • Sebastian Borchert,
  • Ulrich Achatz,
  • Sebastian Remmler,
  • Stefan Hickel,
  • Uwe Harlander,
  • Miklos Vincze,
  • Kiril D. Alexandrov,
  • Felix Rieper,
  • Tobias Heppelmann,
  • Stamen I. Dolaptchiev

DOI
https://doi.org/10.1127/metz/2014/0548
Journal volume & issue
Vol. 23, no. 6
pp. 561 – 580

Abstract

Read online

The differentially heated rotating annulus is a classical experiment for the investigation of baroclinic flows and can be regarded as a strongly simplified laboratory model of the atmosphere in mid-latitudes. Data of this experiment, measured at the BTU Cottbus-Senftenberg, are used to validate two numerical finite-volume models (INCA and cylFloit) which differ basically in their grid structure. Both models employ an implicit parameterization of the subgrid-scale turbulence by the Adaptive Local Deconvolution Method (ALDM). One part of the laboratory procedure, which is commonly neglected in simulations, is the annulus spin-up. During this phase the annulus is accelerated from a state of rest to a desired angular velocity. We use a simple modelling approach of the spin-up to investigate whether it increases the agreement between experiment and simulation. The model validation compares the azimuthal mode numbers of the baroclinic waves and does a principal component analysis of time series of the temperature field. The Eady model of baroclinic instability provides a guideline for the qualitative understanding of the observations.

Keywords