Measurement + Control (Sep 2023)

Research on control strategy of seven-DOF vehicle active suspension system based on co-simulation

  • Shuo Ma,
  • Yongming Li,
  • Shaocheng Tong

DOI
https://doi.org/10.1177/00202940231154954
Journal volume & issue
Vol. 56

Abstract

Read online

In recent years, since the unique advantages in automotive structures, the vehicle active suspension systems have received widespread attentions. A good active suspension system can reduce the vibration and improve the overall performance of the vehicle. Therefore, the design of the controller for the active suspension system to perform autonomous adjustment plays a vital role in vehicle comfort and safety. For the active suspension of the seven-DOF sport utility vehicle (SUV) model, this paper takes the vehicle body acceleration, tire dynamic load and suspension dynamic travel as the indicators to evaluate the performance, and the proportional-integral-derivative (PID) controller is designed to improve the performance of the vehicle active suspension system. Based on the software of MATLAB/Simulink and Carsim, a closed-loop co-simulation model diagram is established, which includes a PID controller module. Meanwhile, the random road input model and the whole vehicle model are constructed in Carsim. Finally, at the speeds of 70, 90, and 120 km/h, the active suspension system under the designed PID controller is simulated and compared with the passive suspension system. The simulation results show that the active suspension system based on PID controller can effectively improve the overall performance of the vehicle, and then the comfort and safety of the vehicle can be further enhanced.