Green Energy & Environment (May 2024)

Interfacial friction induced capillary flow within nanofiber-supported ionic liquid droplets

  • Yuanyuan Zhao,
  • Gang Xia,
  • Yintung Lam,
  • John Haozhong Xin

Journal volume & issue
Vol. 9, no. 5
pp. 789 – 791

Abstract

Read online

As global economic growth increases, the demand for energy sources boosts. While fossil fuels have traditionally satisfied this demand, their environmental influence and limited reserves require alternatives. Fossil fuel combustion contributes substantially to greenhouse gas emissions, with a pressing need to halve these emissions by 2030 and target net-zero by 2050. Renewable energy sources, contributing currently to 29% of global electricity, are viewed as promising substitutes. With wind energy's potential, Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative “drop wind generator”. This system, combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays, exploits wind-induced flows for energy conversion. This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics.

Keywords