Agriculture (Oct 2022)

Modeling the Agricultural Soil Landscape of Germany—A Data Science Approach Involving Spatially Allocated Functional Soil Process Units

  • Mareike Ließ

DOI
https://doi.org/10.3390/agriculture12111784
Journal volume & issue
Vol. 12, no. 11
p. 1784

Abstract

Read online

The national-scale evaluation and modeling of the impact of agricultural management and climate change on soils, crop growth, and the environment require soil information at a spatial resolution addressing individual agricultural fields. This manuscript presents a data science approach that agglomerates the soil parameter space into a limited number of functional soil process units (SPUs) that may be used to run agricultural process models. In fact, two unsupervised classification methods were developed to generate a multivariate 3D data product consisting of SPUs, each being defined by a multivariate parameter distribution along the depth profile from 0 to 100 cm. The two methods account for differences in variable types and distributions and involve genetic algorithm optimization to identify those SPUs with the lowest internal variability and maximum inter-unit difference with regards to both their soil characteristics and landscape setting. The high potential of the methods was demonstrated by applying them to the agricultural German soil landscape. The resulting data product consists of 20 SPUs. It has a 100 m raster resolution in the 2D mapping space, and its resolution along the depth profile is 1 cm. It includes the soil properties texture, stone content, bulk density, hydromorphic properties, total organic carbon content, and pH.

Keywords