Clinical Ophthalmology (Jun 2013)

Correlation of inflammatory and proangiogenic cytokines from undiluted vitreous samples with spectral domain OCT scans, in untreated branch retinal vein occlusion

  • Pfister M,
  • Rothweiler F,
  • Michaelis M,
  • Cinatl J Jr,
  • Schubert R,
  • Koch FH,
  • Koss MJ

Journal volume & issue
Vol. 2013, no. default
pp. 1061 – 1067

Abstract

Read online

Marcel Pfister,1,4 Florian Rothweiler,2 Martin Michaelis,2 Jindrich Cinatl Jr,2 Ralf Schubert,3 Frank H Koch,1 Michael J Koss1,4 1Department of Ophthalmology, Goethe University, Frankfurt, Germany; 2Department of Virology, Goethe University, Frankfurt, Germany; 3Department of Pediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Goethe University, Frankfurt, Germany; 4Doheny Eye Institute, University of Southern California, Los Angeles, CA, USA Purpose: To assess the levels of inflammatory and angiogenic cytokines in undiluted vitreous from treatment-naïve patients with macular edema secondary to nonischemic branch retinal vein occlusion (BRVO), with flow cytometric bead array (CBA) and to correlate the results with subjective and multiple spectral-domain optical coherence tomography (SD-OCT) parameters. Methods: A total of 43 eyes from 43 patients (mean age 69.7 years, 23 male) were divided into groups of new, "fresh" (n = 28; mean duration after onset 4.1 months) and older BRVO (n = 15; 11.6 months). Because of macular edema, these patients underwent an intravitreal therapy combining a single-site 23 g core vitrectomy with bevacizumab and dexamethasone. Undiluted vitreous was then analyzed for interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor isoform A (VEGF-A) levels with CBA and correlated with visual acuity (VA), clinical parameters of BRVO (type and perfusion status), and morphologic parameters, such as central macular thickness, central retinal thickness, thickness of the neurosensory retina, thickness of the serous retinal detachment, and the disruption of the ellipsoid line (photoreceptor inner and outer segments) and the external limiting membrane, as measured with SD-OCT. Twenty-eight undiluted vitreous samples from patients with idiopathic, nonuveitis vitreous floaters served as the controls. Results: The mean IL-6 was 23.2 pg/mL (standard deviation, ±48.8), MCP-1 was 602.6 (±490.3), and VEGF-A was 161.8 (±314.3), and this was higher than in the control group, which had a mean IL-6 of 6.2 ± 3.4 pg/mL (P = 0.17), MCP-1 of 253.2 ± 73.5 (P < 0.0000001), and VEGF-A of 7.0 ± 4.9 (P < 0.003). In all BRVO samples, IL-6 correlated positively with MCP-1 and VEGF-A (correlation coefficient r = 0.79 and r = 0.46, respectively). VEGF-A was the only cytokine to correlate significantly with SD-OCT parameters (thickness of the neurosensory retina r = 0.31; disruption of the ellipsoid line r = 0.33). In the older BRVO group, there was a positive correlation between cytokines (IL-6 with MCP-1, r = 0.77; Il-6 with VEGF-A, r = 0.68; MCP-1 and VEGF-A, r = 0.68), whereas only IL-6 correlated with MCP-1 in the fresh group (r = 0.8). Conclusion: The inflammatory markers and VEGF-A were elevated in the vitreous fluid of patients with BRVO, and these correlated with one another. VEGF-A was more often correlated with the morphologic changes assessed by SD-OCT, whereas the inflammatory markers had no significant influence on SD-OCT changes. Keywords: vitreous samples, BRVO, VEGF, MCP, IL-6, CBA, SD-OCT