Open Biology (Oct 2019)

Generation of Fad2 and Fad3 transgenic mice that produce n-6 and n-3 polyunsaturated fatty acids

  • Lishuang Song,
  • Lei Yang,
  • Jiapeng Wang,
  • Xuefei Liu,
  • Lige Bai,
  • Anqi Di,
  • Guangpeng Li

DOI
https://doi.org/10.1098/rsob.190140
Journal volume & issue
Vol. 9, no. 10

Abstract

Read online

Linoleic acid (18 : 2, n-6) and α-linolenic acid (18 : 3, n-3) are polyunsaturated fatty acids (PUFAs), which are essential for mammalian health, development and growth. However, the majority of mammals, including humans, are incapable of synthesizing n-6 and n-3 PUFAs. Mammals must obtain n-6 and n-3 PUFAs from their diet. Fatty acid desaturase (Fad) plays a critical role in plant PUFA biosynthesis. Therefore, we generated plant-derived Fad3 single and Fad2–Fad3 double transgenic mice. Compared with wild-type mice, we found that PUFA levels were greatly increased in the single and double transgenic mice by measuring PUFA levels. Moreover, the concentration of n-6 and n-3 PUFAs in the Fad2–Fad3 double transgenic mice were greater than in the Fad3 single transgenic mice. These results demonstrate that the plant-derived Fad2 and Fad3 genes can be expressed in mammals. To clarify the mechanism for Fad2 and Fad3 genes in transgenic mice, we measured the PUFAs synthesis-related genes. Compared with wild-type mice, these Fad transgenic mice have their own n-3 and n-6 PUFAs biosynthetic pathways. Thus, we have established a simple and efficient method for in vivo synthesis of PUFAs.

Keywords