Mathematics (Nov 2022)

WSI: A New Early Warning Water Survival Index for the Domestic Water Demand

  • Dong-Her Shih,
  • Ching-Hsien Liao,
  • Ting-Wei Wu,
  • Huan-Shuo Chang,
  • Ming-Hung Shih

DOI
https://doi.org/10.3390/math10234478
Journal volume & issue
Vol. 10, no. 23
p. 4478

Abstract

Read online

A reservoir is an integrated water resource management infrastructure that can be used for water storage, flood control, power generation, and recreational activities. Predicting reservoir levels is critical for water supply management and can influence operations and intervention strategies. Currently, the water supply monitoring index is used to warn the water level of most reservoirs. However, there is no precise calculation method for the current water supply monitoring index to warn about the adequacy of the domestic water demand. Therefore, taking Feitsui Reservoir as an example, this study proposes a new early warning water survival index (WSI) to warn users whether there is a shortage of domestic water demand in the future. The calculation of WSI was divided into two stages. In the first stage, the daily rainfall, daily inflow, daily outflow, and daily water level of the Feitsui Reservoir were used as input variables to predict the water level of the Feitsui Reservoir by the machine learning method. In the second stage, the interpolation method was used to calculate the daily domestic water demand in Greater Taipei. Combined with the water level prediction results of the Feitsui Reservoir in the first stage, the remaining estimated days of domestic water supply from the Feitsui Reservoir to Greater Taipei City were calculated. Then, the difference between the estimated remaining days of domestic water demand and the moving average was converted by the bias ratio to obtain a new WSI. WSI can be divided into short-term bias ratios and long-term bias ratios. In this study, the degree of the bias ratio of WSI was given in three colors, namely, condition blue, condition green, and condition red, to provide users with a warning of the shortage of domestic water in the future. The research results showed that compared with the existing water supply monitoring index, the new WSI proposed in this study can faithfully present the warning of the lack of domestic water demand in the future.

Keywords