Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
Junlong Tan
Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
Xiangning Liu
Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
Fujun Jin
Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100000, China
Renfa Lai
Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China; Correspondence to: R. Lai, No 613 Huangpu Avenue, Tianhe District, Guangzhou 510630, China.
Xiaogang Wang
Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100000, China; Correspondence to: X. Wang, No. 37 Xueyuan Road, Haidian District, Beijing 100000, China.
MicroRNAs (miRNAs) have been proven to serve as key post-transcriptional regulators, affecting diverse biological processes including osteogenic differentiation and bone formation. Recently, it has been reported that miR-146a-5p affects the activity of both osteoblasts and osteoclasts. However, the target genes of miR-146a-5p in these procedures remain unknown. Here we identify miR-146a-5p as a critical suppressor of osteoblastogenesis and bone formation. We found that miR-146a-5p knockout mice exhibit elevated bone formation and enhanced bone mass in vivo. Consistently, we also found that miR-146a-5p inhibited the osteoblast differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. Importantly, we further demonstrated that miR-146a-5p directly targeted Sirt1 to inhibit osteoblast activity. Additionally, we showed that the expression of miR-146a-5p gradually increased in femurs with age not only in female mice but also in female patients, and miR-146a-5p deletion protected female mice from age-induced bone loss. These data suggested that miR-146a-5p has a crucial role in suppressing the bone formation and that inhibition of miR-146a-5p may be a strategy for ameliorating osteoporosis.