Науковий вісник Ужгородського університету. Серія: Математика і інформатика (Nov 2021)

Стоячі хвилі в дискретних рівняннях типу Клейна-Ґордона зі степеневими нелінійностями

  • С. М. Бак

DOI
https://doi.org/10.24144/2616-7700.2021.39(2).7-21
Journal volume & issue
Vol. 39, no. 2
pp. 7 – 21

Abstract

Read online

Дана стаття присвячена вивченню дискретних рівнянь типу Клейна-Ґордона, які описують динаміку нескінченного ланцюга лінійно зв’язаних нелінійних осциляторів. Ці рівняння представляють собою зчисленну систему звичайних диференціальних рівнянь. Такі системи є нескінченновимірними гамільтоновими системами. Розглядаються рівняння типу Клейна-Ґордона зі степеневими нелінійностями непарного степеня. При підстановці анзаца у вигляді стоячої хвилі одержується система алгебраїчних рівнянь для амплітуди стоячої хвилі. Далі розглядається система з більш загальним оператором L лінійної взаємодії осциляторів, який є обмеженим і самоспряженим у гільбертовому просторі дійсних двохсторонніх послідовностей l2. Розглядається задача про існування періодичних і локалізованих (збігаються до нуля на нескінченності) розв’язків для таких систем. Основними умовами існування цих розв’язків є просторова періодичність коефіцієнтів оператора лінійної взаємодії осциляторів та належність частоти стоячої хвилі спектральному проміжку оператора L. Якщо правий кінець спектрального проміжка скінченний, то система має нетривіальні розв’язки. У цій статті показано, що періодичні і локалізовані розв’язки цієї системи можна побудувати як критичні точки відповідних функціоналів Jk та J. Існування періодичних розв’язків встановлено за допомогою теореми про зачеплення. Зокрема, показано, що функціонал Jk задовольняє так звану умову Пале-Смейла та геометрію зачеплення, а отже, має нетривіальні критичні точки. Останні і є періодичними розв’язками системи. У випадку локалізованих розв’язків використати теорему про зачеплення не можна, оскільки для функціоналу J не виконується умова Пале-Смейла. Тому у цьому випадку використано метод періодичних апроксимацій, тобто критичні точки функціоналу J будуються за допомогою граничного переходу при k→∞ в критичних точках функціоналу Jk. В силу відомих властивостей дискретного оператора Лапласа одержано наслідок, в якому встановлено умови існування локалізованих розв’язків для вихідної системи.

Keywords