Journal of Chemistry (Jan 2021)
Synthesis, Spectral Characterization, and In Vitro Cytotoxicity of Some Fe(III) Complexes Bearing Unsymmetrical Salen-Type Ligands Derived from 2-Hydroxynaphthaldehyde and Substituted Salicylaldehydes
Abstract
Six Fe(III) complexes bearing unsymmetrical salen-type ligands derived from 2-hydroxynaphthaldehyde and substituted salicylaldehydes were synthesized by coordinating the unsymmetrical salen-type ligands with FeCl3.6H2O. The synthetic complexes were characterized by electrospray ionization mass spectra (ESI-MS), effective magnetic moments (μeff), and infrared (IR) and ultraviolet-visible (UV-Vis) spectra. The spectroscopic data are in good agreement with the suggested molecular formulae of the complexes. Their cyclic voltammetric studies in acetonitrile solutions showed that the Fe(III)/Fe(II) reduction processes are electrochemically irreversible. The in vitro cytotoxicity of the obtained complexes was screened on human cancer cell lines KB (a subline of Hela tumor cell line) and HepG2 (a human liver cancer cell line) and a normal human cell line HEK-293 (Human Embryonic Kidney cell line). The results showed that the synthetic Fe(III) complexes are highly cytotoxic and quite selective. The synthetic complexes bearing unsymmetrical salen-type ligands with different substituted groups in the salicyl ring indicate different cytotoxicity.