Entropy (Oct 2015)

Method for Measuring the Information Content of Terrain from Digital Elevation Models

  • Lujin Hu,
  • Zongyi He,
  • Jiping Liu,
  • Chunhua Zheng

DOI
https://doi.org/10.3390/e17107021
Journal volume & issue
Vol. 17, no. 10
pp. 7021 – 7051

Abstract

Read online

As digital terrain models are indispensable for visualizing and modeling geographic processes, terrain information content is useful for terrain generalization and representation. For terrain generalization, if the terrain information is considered, the generalized terrain may be of higher fidelity. In other words, the richer the terrain information at the terrain surface, the smaller the degree of terrain simplification. Terrain information content is also important for evaluating the quality of the rendered terrain, e.g., the rendered web terrain tile service in Google Maps (Google Inc., Mountain View, CA, USA). However, a unified definition and measures for terrain information content have not been established. Therefore, in this paper, a definition and measures for terrain information content from Digital Elevation Model (DEM, i.e., a digital model or 3D representation of a terrain’s surface) data are proposed and are based on the theory of map information content, remote sensing image information content and other geospatial information content. The information entropy was taken as the information measuring method for the terrain information content. Two experiments were carried out to verify the measurement methods of the terrain information content. One is the analysis of terrain information content in different geomorphic types, and the results showed that the more complex the geomorphic type, the richer the terrain information content. The other is the analysis of terrain information content with different resolutions, and the results showed that the finer the resolution, the richer the terrain information. Both experiments verified the reliability of the measurements of the terrain information content proposed in this paper.

Keywords