Bioengineered (May 2022)

Bone mesenchymal stem cells (BMSCs)-derived exosomal microRNA-21-5p regulates Kruppel-like factor 3 (KLF3) to promote osteoblast proliferation in vitro

  • Murong You,
  • Zisheng Ai,
  • Jihuan Zeng,
  • Yang Fu,
  • Liang Zhang,
  • Xin Wu

DOI
https://doi.org/10.1080/21655979.2022.2067286
Journal volume & issue
Vol. 13, no. 5
pp. 11933 – 11944

Abstract

Read online

Bone mesenchymal stem cells (BMSCs)-derived exosomes (Exos) play important roles in osteoporosis, while the regulation of microRNA (miR)-21-5p remains unclear. The BMSCs-derived exosomes were isolated from femoral bone marrow of trauma patients, which were then used to stimulate human osteoblasts (hFOB1.19 cells). The miR-21-5p mimic or inhibitor was transfected into BMSCs to overexpress or knockdown miR-21-5p. The functions of miR-21-5p in osteoporosis were assessed by cell counting kit-8 (CCK-8) assay, alkaline phosphatase (ALP) staining and alizarin red staining assays. We found that BMSCs-derived exosomes could enhance proliferation, osteoblastic differentiation and ALP activity of hFOB1.19 cells. BMSCs-derived exosomes with upregulated miR-21-5p could further enhance these protective impacts compared with that in BMSCs-derived exosomes, while BMSCs-derived exosomes with downregulated miR-21-5p reduced these cell phenotypes. MiR-21-5p could directly bind to the 3’-untranslated region (UTR) of Kruppel-like factor 3 (KLF3), and knockdown of KLF3 obviously attenuated these inhibitory effects of BMSCs-derived exosomes with downregulated miR-21-5p on osteoblastic differentiation and ALP activity of hFOB1.19 cells. In summary, BMSCs-derived exosomal miR-21-5p improved osteoporosis through regulating KLF3, providing a potential therapeutic strategy for osteoporosis.

Keywords