IEEE Access (Jan 2022)
Scalable Contact-Capacitive MEMS Switches With High Capacitance Ratio for Millimeter-Wave Applications
Abstract
This paper proposes a series of optimized scalable contact-capacitive radio frequency micro- electro-mechanical systems (RF MEMS) switches for millimeter wave applications. Due to the contact-capacitive topology, the ON-state and OFF-state of the switch can be designed separately to obtain smaller $C_{ON}$ and larger $C_{OFF}$ , which results in high capacitance ratio ( $C_{r}$ ). The $C_{ON}$ is defined by capacitance of the contacts, and it is optimized for low insertion loss ( $IL_{ON}$ ). The $C_{OFF}$ is defined by the metal-insulator-metal (MIM) capacitor, and it is designed for working band and scalable performance. The measurements of the fabricated devices show acceptable agreements with design and simulation. The optimized switches perform well with $IL_{ON}$ better than 1.5dB and capacitive ratio about 124. The switches follow scaling rules from 20GHz to 110GHz. Linearity (IIP3) of the switches are tested to be higher than 60dBm, and calculated to be higher than 80dBm. Performances of the switch can be further improved and optimized in the future study.
Keywords