Sensors (Jan 2024)

J-Net: Improved U-Net for Terahertz Image Super-Resolution

  • Woon-Ha Yeo,
  • Seung-Hwan Jung,
  • Seung Jae Oh,
  • Inhee Maeng,
  • Eui Su Lee,
  • Han-Cheol Ryu

DOI
https://doi.org/10.3390/s24030932
Journal volume & issue
Vol. 24, no. 3
p. 932

Abstract

Read online

Terahertz (THz) waves are electromagnetic waves in the 0.1 to 10 THz frequency range, and THz imaging is utilized in a range of applications, including security inspections, biomedical fields, and the non-destructive examination of materials. However, THz images have a low resolution due to the long wavelength of THz waves. Therefore, improving the resolution of THz images is a current hot research topic. We propose a novel network architecture called J-Net, which is an improved version of U-Net, to achieve THz image super-resolution. It employs simple baseline blocks which can extract low-resolution (LR) image features and learn the mapping of LR images to high-resolution (HR) images efficiently. All training was conducted using the DIV2K+Flickr2K dataset, and we employed the peak signal-to-noise ratio (PSNR) for quantitative comparison. In our comparisons with other THz image super-resolution methods, J-Net achieved a PSNR of 32.52 dB, surpassing other techniques by more than 1 dB. J-Net also demonstrates superior performance on real THz images compared to other methods. Experiments show that the proposed J-Net achieves a better PSNR and visual improvement compared with other THz image super-resolution methods.

Keywords