Journal of High Energy Physics (Feb 2022)
Bootstrapping 2d ϕ 4 theory with Hamiltonian truncation data
Abstract
Abstract We combine the methods of Hamiltonian Truncation and the recently proposed generalisation of the S-matrix bootstrap that includes local operators to determine the two-particle scattering amplitude and the two-particle form factor of the stress tensor at s > 0 in the 2d ϕ 4 theory. We use the form factor of the stress tensor at s ≤ 0 and its spectral density computed using Lightcone Conformal Truncation (LCT), and inject them into the generalized S-matrix bootstrap set-up. The obtained results for the scattering amplitude and the form factor are fully reliable only in the elastic regime. We independently construct the “pure” S-matrix bootstrap bounds (bootstrap without including matrix elements of local operators), and find that the sinh-Gordon model and its analytic continuation the “staircase model” saturate these bounds. Surprisingly, the ϕ 4 two-particle scattering amplitude also very nearly saturates these bounds, and moreover is extremely close to that of the sinh-Gordon/staircase model.
Keywords