Journal of Cardiovascular Magnetic Resonance (Jan 2023)

Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: a prospective cohort study

  • Tatsuya Fukase,
  • Tomotaka Dohi,
  • Shinichiro Fujimoto,
  • Ryota Nishio,
  • Yui O. Nozaki,
  • Ayako Kudo,
  • Mitsuhiro Takeuchi,
  • Norihito Takahashi,
  • Yuichi Chikata,
  • Hirohisa Endo,
  • Yuko O. Kawaguchi,
  • Shinichiro Doi,
  • Hiroki Nishiyama,
  • Makoto Hiki,
  • Iwao Okai,
  • Hiroshi Iwata,
  • Takayuki Yokoyama,
  • Shinya Okazaki,
  • Katsumi Miyauchi,
  • Hiroyuki Daida,
  • Debiao Li,
  • Yibin Xie,
  • Tohru Minamino

DOI
https://doi.org/10.1186/s12968-023-00916-1
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background This study aimed to compare the coronary plaque characterization by cardiovascular magnetic resonance (CMR) and near-infrared spectroscopy (NIRS)-intravascular ultrasound (IVUS) (NIRS-IVUS), and to determine whether pre–percutaneous coronary intervention (PCI) evaluation using CMR identifies high-intensity plaques (HIPs) at risk of peri-procedural myocardial infarction (pMI). Although there is little evidence in comparison with NIRS-IVUS findings, which have recently been shown to identify vulnerable plaques, we inferred that CMR-derived HIPs would be associated with vulnerable plaque features identified on NIRS-IVUS. Methods 52 patients with stable coronary artery disease who underwent CMR with non-contrast T1-weighted imaging and PCI using NIRS-IVUS were studied. HIP was defined as a signal intensity of the coronary plaque-to-myocardial signal intensity ratio (PMR) ≥ 1.4, which was measured from the data of CMR images. We evaluated whether HIPs were associated with the NIRS-derived maximum 4-mm lipid-core burden index (maxLCBI4mm) and plaque morphology on IVUS, and assessed the incidence and predictor of pMI defined by the current Universal Definition using high-sensitive cardiac troponin-T. Results Of 62 lesions, HIPs were observed in 30 lesions (48%). The HIP group had a significantly higher remodeling index, plaque burden, and proportion of echo-lucent plaque and maxLCBI4mm ≥ 400 (known as large lipid-rich plaque [LRP]) than the non-HIP group. The correlation between the maxLCBI4mm and PMR was significantly positive (r = 0.51). In multivariable logistic regression analysis for prediction of HIP, NIRS-derived large LRP (odds ratio [OR] = 5.41; 95% confidence intervals [CIs] 1.65–17.8, p = 0.005) and IVUS-derived echo-lucent plaque (OR = 5.12; 95% CIs 1.11–23.6, p = 0.036) were strong independent predictors. Furthermore, pMI occurred in 14 of 30 lesions (47%) with HIP, compared to only 5 of 32 lesions (16%) without HIP (p = 0.005). In multivariable logistic regression analysis for prediction of incidence of pMI, CMR-derived HIP (OR = 5.68; 95% CIs 1.53–21.1, p = 0.009) was a strong independent predictor, but not NIRS-derived large LRP and IVUS-derived echo-lucent plaque. Conclusions There is an important relationship between CMR-derived HIP and NIRS-derived large LRP. We also confirmed that non-contrast T1-weighted CMR imaging is useful for characterization of vulnerable plaque features as well as for pre-PCI risk stratification. Trial registration The ethics committee of Juntendo Clinical Research and Trial Center approved this study on January 26, 2021 (Reference Number 20-313).

Keywords