AMB Express (Dec 2017)
Synergistic production of 20(S)-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii
Abstract
Abstract 20(S)-Protopanaxadiol (APPD) has potential uses in the pharmaceutical, cosmetic, and food industries because of its anti-stress, anti-fatigue, anti-cancer, anti-inflammatory, and anti-wrinkle properties. However, APPD production is difficult because β-glycosidases that convert the protopanaxadiol (PPD)-type ginsenoside compound K to APPD are rare. β-Glycosidase from Dictyoglomus turgidum (DT-bgl) has the highest specific activity for converting compound K to APPD, but exhibits no activity towards the α-l-arabinopyranoside moiety in compound Y. Therefore, β-glycosidase from Caldicellulosiruptor bescii (CB-bgl), which has a strong α-l-arabinopyranosidase activity, was used along with DT-bgl. The volumetric and specific productivities of the two-enzyme system for APPD using ginseng root extract were 38.4- and 38.7-fold higher, respectively, than those of β-glycosidase from Pyrococcus furiosus, which had the highest volumetric productivity previously reported, at the same enzyme and substrate concentrations. Thus, DT-bgl combined with CB-bgl completely converted PPD-type ginsenosides to APPD with the highest volumetric and specific productivities reported thus far.
Keywords