Journal of Fungi (Sep 2022)

Using Ex Situ Seedling Baiting to Capture Seedling-Associated Mycorrhizal Fungi in Medicinal Orchid <i>Dendrobium officinale</i>

  • Yi-Hua Wu,
  • De-Yun Chen,
  • Xin-Ju Wang,
  • Neng-Qi Li,
  • Jiang-Yun Gao

DOI
https://doi.org/10.3390/jof8101036
Journal volume & issue
Vol. 8, no. 10
p. 1036

Abstract

Read online

Using orchid mycorrhizal fungi (OMFs) to facilitate orchid proliferation is considered an effective method of orchid conservation. Based on the success of using in situ seedling baiting to obtain plant growth-promoting fungi in our previous study, in this study, we developed the method of using ex situ seedling baiting to capture seedling-associated fungi from Dendrobium officinale. We collected substrates (e.g., litters, barks and mosses) from six original habitats of D. officinale in different geographical locations in China, and then, transplanted in vitro-produced seedlings of D. officinale into the substrates. After cultivation for 75 days, it was obvious that fungi colonized the seedling roots and formed large numbers of pelotons in all six groups. From these seedling roots, a total of 251 fungal strains, which were divided into 16 OMF and 11 non-OMF species, were successfully isolated. The 16 OMFs included 13 Tulasnella and 3 Serendipitaceae species. The fungal species isolated from the different groups (original habitat sources) were not identical, but the dominant OMFs with high isolation frequencies (more than 10 times) were commonly isolated from more than four original sources. Among the 11 non-OMFs, Fusarium oxysporum TP-18 and Muscodor sp. TP-26 were the dominant endophytes. Fusarium oxysporum is a common endophyte associated with many orchid species, including D. officinale. The results suggest that ex situ seedling baiting is an easy and efficient approach to obtaining seedling-associated fungi for this species and could be performed for other over-collected species, especially orchids for which wild plants have disappeared in the field but their original habitats are known. This approach has great potential for application in OMF studies in the future.

Keywords