Neural Regeneration Research (Jan 2021)

Gene therapy with caspase-3 small interfering RNA-nanoparticles is neuroprotective after optic nerve damage

  • Mohamed Tawfik,
  • Xiwei Zhang,
  • Lisa Grigartzik,
  • Peter Heiduschka,
  • Werner Hintz,
  • Petra Henrich-Noack,
  • Berend van Wachem,
  • Bernhard A Sabel

DOI
https://doi.org/10.4103/1673-5374.313068
Journal volume & issue
Vol. 16, no. 12
pp. 2534 – 2541

Abstract

Read online

Apoptosis, a key mechanism of programmed cell death, is triggered by caspase-3 protein and lowering its levels with gene therapy may rescue cell death after central nervous system damage. We developed a novel, non-viral gene therapy to block caspase-3 gene expression using small interfering RNA (siRNA) delivered by polybutylcyanoacrylate nanoparticles (CaspNPs). In vitro CaspNPs significantly blocked caspase-3 protein expression in C6 cells, and when injected intraocularly in vivo, CaspNPs lowered retinal capsase-3 immunofluorescence by 57.9% in rats with optic nerve crush. Longitudinal, repeated retinal ganglion cell counts using confocal neuroimaging showed that post-traumatic cell loss after intraocular CaspNPs injection was only 36.1% versus 63.4% in lesioned controls. Because non-viral gene therapy with siRNA-nanoparticles can selectively silence caspace-3 gene expression and block apoptosis in post-mitotic neurons, siRNA delivery with nanoparticles may be promising for neuroprotection or restoration of central visual system damage and other neurological disorders. The animal study procedures were approved by the German National Act on the use of experimental animals (Ethic Committee Referat Verbraucherschutz, Veterinärangelegenheiten; Landesverwaltungsamt Sachsen-Anhalt, Halle, Germany, # IMP/G/01-1150/12 and # IMP/G/01-1469/17).

Keywords