Sensors (Oct 2022)
SWCNT Network-FET Device for Human Serum Albumin Detection
Abstract
A thin film of single-walled carbon nanotube (SWCNT) network field-effect transistor (FET) was fabricated by a simple, fast, and reliable deposition method for electronic applications. This study aims to develop a method for fabricating a thin film of random SWCNTs to be used as a transducer to detect human serum albumin (HSA) in biosensor applications. The random SWCNT network was deposited using the airbrush technique. The morphology of the CNT network was examined by utilising atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), while electrical characteristics were analysed using three-terminal IV measurements. The thin film (SWCNT network) was applied as a transducer to detect human serum albumin (HSA) based on its covalent interaction with antibodies. HSA plays a significant part in the physiological functions of the human body. The surface alteration of the SWCNTs was verified using Fourier transform infrared (FTIR) spectroscopy. Electrical current–voltage measurements validated the surface binding and HSA detection. The biosensor linearly recorded a 0.47 fg/mL limit of detection (LOD) and a high sensitivity of 3.44 μA (g/mL)−1 between 1 fg/mL and 10 pg/mL. This device can also be used to identify a genuine HSA despite interference from other biomolecules (i.e., bovine serum albumin (BSA)), thus demonstrating the random SWCNT-FET immunosensor ability to quantify HSA in a complex biological environment.
Keywords