Mathematical Biosciences and Engineering (Jun 2023)

An efficient ECG denoising method by fusing ECA-Net and CycleGAN

  • Peng Zhang ,
  • Mingfeng Jiang ,
  • Yang Li,
  • Ling Xia,
  • Zhefeng Wang,
  • Yongquan Wu,
  • Yaming Wang,
  • Huaxiong Zhang

DOI
https://doi.org/10.3934/mbe.2023598
Journal volume & issue
Vol. 20, no. 7
pp. 13415 – 13433

Abstract

Read online

For wearable electrocardiogram (ECG) acquisition, it was easy to infer motion artifices and other noises. In this paper, a novel end-to-end ECG denoising method was proposed, which was implemented by fusing the Efficient Channel Attention (ECA-Net) and the cycle consistent generative adversarial network (CycleGAN) method. The proposed denoising model was optimized by using the ECA-Net method to highlight the key features and introducing a new loss function to further extract the global and local ECG features. The original ECG signal came from the MIT-BIH Arrhythmia Database. Additionally, the noise signals used in this method consist of a combination of Gaussian white noise and noises sourced from the MIT-BIH Noise Stress Test Database, including EM (Electrode Motion Artifact), BW (Baseline Wander) and MA (Muscle Artifact), as well as mixed noises composed of EM+BW, EM+MA, BW+MA and EM+BW+MA. Moreover, corrupted ECG signals were generated by adding different levels of single and mixed noises to clean ECG signals. The experimental results show that the proposed method has better denoising performance and generalization ability with higher signal-to-noise ratio improvement (SNRimp), as well as lower root-mean-square error (RMSE) and percentage-root-mean-square difference (PRD).

Keywords