Nature Communications (Dec 2024)

Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway

  • Yoshitaka Adachi,
  • Seitaro Terakura,
  • Masahide Osaki,
  • Yusuke Okuno,
  • Yoshitaka Sato,
  • Ken Sagou,
  • Yuki Takeuchi,
  • Hirofumi Yokota,
  • Kanae Imai,
  • Peter Steinberger,
  • Judith Leitner,
  • Ryo Hanajiri,
  • Makoto Murata,
  • Hitoshi Kiyoi

DOI
https://doi.org/10.1038/s41467-024-54794-x
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Chimeric antigen receptor (CAR) T cell is a promising therapy for cancer, but factors that enhance the efficacy of CAR T cell remain elusive. Here we perform a genome-wide CRISPR screening to probe genes that regulate the proliferation and survival of CAR T cells following repetitive antigen stimulations. We find that genetic ablation of CUL5, encoding a core element of the multi-protein E3 ubiquitin-protein ligase complex, cullin-RING ligase 5, enhances human CD19 CAR T cell expansion potential and effector functions, potentially via the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In this regard, CUL5 knockout CD19 CAR T cells show sustained STAT3 and STAT5 phosphorylation, as well as delayed phosphorylation and degradation of JAK1 and JAK3. In vivo, shRNA-mediated knockdown of CUL5 enhances CD19 CAR T treatment outcomes in tumor-bearing mice. Our findings thus imply that targeting CUL5 in the ubiquitin system may enhance CAR T cell effector functions to enhance immunotherapy efficacy.