E3S Web of Conferences (Jan 2018)

Shallow flow over a bed with a lateral change of roughness

  • Dupuis Victor,
  • Moulin Frédéric,
  • Cazin Sébastien,
  • Marchal Moïse,
  • Elyakime Pierre,
  • Barron Jean-Dominique,
  • Eiff Olivier

DOI
https://doi.org/10.1051/e3sconf/20184002039
Journal volume & issue
Vol. 40
p. 02039

Abstract

Read online

River beds frequently exhibit a lateral variation of roughness. For example, in the case of an overflowing river, the main channel has a smoother topography compared to the adjacent floodplains where vegetation and land occupation yield an important hydraulic roughness. The lateral difference in roughness can induce a high lateral velocity gradient within the river cross- section that gives birth to a mixing layer. This mixing layer leads to fluid and momentum transfers between the two adjacent beds. To understand such mix- ing processes in rivers is important for predicting stage-discharge relationships and the velocity distribution within the cross-section. In order to address these issues in the context of a shallow water flow with a water depth h of the same order as the roughness elements of the bed, experiments were undertaken in a 26 m long and 1.1 m wide glass-walled open-channel flume. One half-side of the bed was covered with an array of cubes of height k arranged in a square configuration, the other side with smooth glass. Three different levels of cube submergence h/k were examined (h/k = 0.8, 1.5 and 2). The experiments and measurements were designed to yield the flow in the complete volume of the interstices across the cube array. To achieve this, 2C-3D linear-scanning PIV measurements with zero-parallax optics were developed and set up. The mea- surements revealed the complexity of the flow structure around the interface between the rough and smooth beds. The results show that the ability of the mixing layer to exchange momentum is highly dependent on the level of the cube submergence h/k.