PLoS ONE (Jan 2022)

A secure multi-party computation protocol without CRS supporting multi-bit encryption

  • Zong-Wu Zhu,
  • Ru-Wei Huang

Journal volume & issue
Vol. 17, no. 3

Abstract

Read online

To solve the problems in the existing fully homomorphic encryption (FHE)-based secure multi-party computation (SMC) protocols such as low efficiency, the FHE scheme that supports multi-bit encryption was modified during the generation of the public key so that the users could generate their public keys independently without the common random string (CRS) matrix. Further, a multi-bit Gentry-Sahai-Waters scheme (MGSW) scheme without CRS was constructed. The modified LinkAlgo algorithm was adopted to expand the single-key ciphertext into the multi-key ciphertext and simplify the way of generating the expanded ciphertext. In this way, a multi-key FHE (MFHE) scheme was achieved based on the MGSW scheme. Finally, a three-round SMC protocol without CRS was constructed using the MFHE scheme and the decisional learning with errors (DLWE) assumption, which was secure in the semi-malicious model. Compared to the existing protocols, the protocol proposed herein can support multi-bit encryption and is found with smaller ciphertext size and lower storage overhead and generate the expanded ciphertext in a simpler way. Overall performance is better than existing protocols.