IEEE Access (Jan 2021)
Near-Optimal <italic>g</italic>-Golomb Rulers
Abstract
A set of positive integers A is called a $g$ -Golomb ruler if the difference between two distinct elements of A is repeated up to $g$ times. This definition is a generalization of the Golomb ruler $(g = 1)$ . In this paper, we obtain new constructions for $g$ -Golomb rulers from Golomb rulers, using these constructions we find some suboptimal 2 and 3-Golomb rulers with up to 124 marks and we prove two theorems related to extremal functions associated with this sets improving already known results.
Keywords