International Journal of Nanomedicine (May 2014)

Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

  • Cheng BR,
  • He ZB,
  • Zhao LB,
  • Fang Y,
  • Chen YY,
  • He RX,
  • Chen FF,
  • Song HB,
  • Deng YL,
  • Zhao XZ,
  • Xiong B

Journal volume & issue
Vol. 2014, no. Issue 1
pp. 2569 – 2580

Abstract

Read online

Boran Cheng,1,* Zhaobo He,2,* Libo Zhao,2,* Yuan Fang,1 Yuanyuan Chen,1 Rongxiang He,2 Fangfang Chen,1 Haibin Song,1 Yuliang Deng,2 Xingzhong Zhao,2 Bin Xiong1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, People’s Republic of China; 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Circulating tumor cells (CTCs) in the blood which have detached from both the primary tumor and any metastases may be considered as a “liquid biopsy” and are expected to replace tumor biopsies in the monitoring of treatment response and determining patient prognosis. Here, we introduce a facile and efficient CTC detection material made of hydroxyapatite/chitosan (HA/CTS), which is beneficial because of its transparency and excellent biological compatibility. Atomic force microscopy images show that the roughness of the HA/CTS nanofilm (HA/CTSNF) substrates can be controlled by changing the HA:CTS ratio. Enhanced local topographic interactions between nano-components on cancer cell membranes, and the antibody coated nanostructured substrate lead to improved CTC capture and separation. This remarkable nanostructured substrate has the potential for CTC culture in situ and merits further analysis. CTCs captured from artificial blood samples were observed in culture on HA/CTSNF substrates over a period of 14 days by using conventional staining methods (hematoxylin eosin and Wright’s stain). We conclude that these substrates are multifunctional materials capable of isolating and culturing CTCs for subsequent studies. Keywords: cell capture, cell culture, nanofilms, hydroxyapatite/chitosan