Nature Communications (Dec 2023)
Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion
Abstract
Abstract The efficient transport and engineering of photonic orbital angular momentum (OAM) lie at the heart of various related classical and quantum applications. Here, by leveraging the spatial-mode-engineered frequency conversion, we realize the remote transport of high-dimensional orbital angular momentum (OAM) states between two distant parties without direct transmission of information carriers. We exploit perfect vortices for preparing high-dimensional yet maximal O AM entanglement. Based on nonlinear sum-frequency generation working with a strong coherent wave packet and a single photon, we conduct the Bell-like state measurements for high-dimensional perfect vortices. We experimentally achieve an average transport fidelity 0.879 ± 0.048 and 0.796 ± 0.066 for a complete set of 3-dimensional and 5-dimensional OAM mutually unbiased bases, respectively. Furthermore, by exploring the full transverse entanglement, we construct another strategy of quantum imaging with interaction-free light. It is expected that, with the future advances in nonlinear frequency conversion, our scheme will pave the way for realizing truly secure high-dimensional quantum teleportation in the upcoming quantum network.