Crystals (May 2012)

Synthesis and Properties of 2-Alkylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene Derivatives and Crystal Structures of Their Cation Radical Salts

  • Keisuke Furuta,
  • Shuhei Kohno,
  • Takashi Shirahata,
  • Koya Yamasaki,
  • Shojun Hino,
  • Yohji Misaki

DOI
https://doi.org/10.3390/cryst2020393
Journal volume & issue
Vol. 2, no. 2
pp. 393 – 412

Abstract

Read online

Tetrathiafulvalene derivatives condensed with 2-alkylidene-1,3-dithiole moiety, MeDTES (2-isopropylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene), EtDTES (2-(pentan-3-ylidene)-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene), and CPDTES (2-cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene) have been synthesized. Crystal structure analysis of MeDTES salts with Au(CN)4−, ReO4−, and I3− and a CPDTES salt with I3− reveals that the donor−anion ratios of all salts are 1:1. Band calculation of (MeDTES)[Au(CN)4] suggests a quasi-one-dimensional Fermi surface that could be the result of the uniform stack of donor molecules. In spite of this stacking, the salt is a Mott insulator because of a large on-site Coulomb interaction U. (MeDTES)(ReO4)(H2O)0.5 possesses Fermi points and exhibits semiconducting behavior with small activation energy (Ea = 0.058 eV). I3− ions form disordered infinite chain in (MeDTES)(I3)(DCE)0.25, but those in (CPDTES)(I3) exist as discrete ions. They show low conductivity (10−4−10−2 S cm−1) at room temperature and the band calculation suggests that they are band insulator.

Keywords