Molecules (Sep 2024)

Synthesis and Antimicrobial Activity of (<i>E</i>)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation

  • Ayashkanta Nanda,
  • Navneet Kaur,
  • Manvinder Kaur,
  • Fohad Mabood Husain,
  • Haesook Han,
  • Pradip K. Bhowmik,
  • Harvinder Singh Sohal

DOI
https://doi.org/10.3390/molecules29184339
Journal volume & issue
Vol. 29, no. 18
p. 4339

Abstract

Read online

The magnetically recoverable heterogeneous Fe2O3@cellulose@Mn nanocomposite was synthesized by a stepwise fabrication of Mn nanoparticles on cellulose-modified magnetic Fe2O3 nanocomposites, and the morphology of the nanocomposite was characterized through advanced spectroscopic techniques. This nanocomposite was investigated as a heterogeneous catalyst for the synthesis of medicinally important tetrazole derivatives through Knoevenagel condensation between aromatic/heteroaromatic aldehyde and malononitrile followed by [3+2] cycloaddition reaction with sodium azide. Thirteen potent (E)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives are reported in this paper with very high yields (up to 98%) and with excellent purity (as crystals) in a very short period (3 min @ 120 W) using microwave irradiation. The present procedure offers several advantages over recent protocols, including minimal catalyst loading, quick reaction time, and the utilization of an eco-friendly solvent. Furthermore, the synthesized (E)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives (4b, 4c, and 4m) are shown to have excellent resistance against various fungal strains over bacterial strains as compared to the standard drugs Cefixime (4 μg/mL) and Fluconazole (2 μg/mL).

Keywords