Reactive Flame-Retardant Cotton Fabric Coating: Combustion Behavior, Durability, and Enhanced Retardant Mechanism with Ion Transfer
Wenju Zhu,
Qing Wang,
Mingyang Yang,
Minjing Li,
Chunming Zheng,
Dongxiang Li,
Xiaohan Zhang,
Bowen Cheng,
Zhao Dai
Affiliations
Wenju Zhu
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Qing Wang
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Mingyang Yang
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Minjing Li
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Chunming Zheng
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Dongxiang Li
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Xiaohan Zhang
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
Bowen Cheng
College of Chemistry Engineering & Materials Science, Tianjin University Science & Technology, Tianjin 300457, China
Zhao Dai
Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
In recent years, we have witnessed numerous indoor fires caused by the flammable properties of cotton. Flame-retardant cotton deserves our attention. A novel boric acid and diethylenetriaminepenta (methylene-phosphonic acid) (DTPMPA) ammonium salt-based chelating coordination flame retardant (BDA) was successfully prepared for cotton fabrics, and a related retardant mechanism with ion transfer was investigated. BDA can form a stable chemical and coordination bond on the surface of cotton fibers by a simple three-curing finishing process. The limiting oxygen index (LOI) value of BDA-90 increased to 36.1%, and the LOI value of cotton fabric became 30.3% after 50 laundering cycles (LCs) and exhibited excellent durable flame retardancy. Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) methods were used to observe the bonding mode and morphology of BDA on cotton fibers. A synergistic flame-retardant mechanism of condensed and gas phases was concluded from thermogravimetry (TG), cone calorimeter tests, and TG-FTIR. The test results of whiteness and tensile strength showed that the physical properties of BDA-treated cotton fabric were well maintained.