Frontiers in Climate (Feb 2021)

Differential Imprints of Distinct ENSO Flavors in Global Patterns of Very Low and High Seasonal Precipitation

  • Marc Wiedermann,
  • Jonatan F. Siegmund,
  • Jonathan F. Donges,
  • Jonathan F. Donges,
  • Reik V. Donner,
  • Reik V. Donner

DOI
https://doi.org/10.3389/fclim.2021.618548
Journal volume & issue
Vol. 3

Abstract

Read online

The effects of El Niño's two distinct flavors, East Pacific (EP) and Central Pacific (CP)/Modoki El Niño, on global climate variability have been studied intensively in recent years. Most of these studies have made use of linear multivariate statistics or composite analysis. Especially the former assumes the same type of linear statistical dependency to apply across different phases of the El Niño–Southern Oscillation (ENSO), which appears not necessarily a justified assumption. Here, we statistically evaluate the likelihood of co-occurrences between very high or very low seasonal precipitation sums over vast parts of the global land surface and the presence of the respective EP and CP types of both, El Niño and La Niña. By employing event coincidence analysis, we uncover differential imprints of both flavors on very low and very high seasonal precipitation patterns over distinct regions across the globe, which may severely affect, among others, agricultural and biomass production or public health. We particularly find that EP periods exhibit statistically significant event coincidence rates with hydrometeorological anomalies at larger spatial scales, whereas sparser patterns emerge along with CP periods. Our statistical analysis confirms previously reported interrelations for EP periods and uncovers additional distinct regional patterns of very high/low seasonal precipitation, such as increased rainfall over Central Asia alongside CP periods that have to our knowledge not been reported so far. Our results demonstrate that a thorough distinction of El Niño and La Niña into their two respective flavors could be crucial for understanding the emergence of strong regional hydrometeorological anomalies and anticipating their associated ecological and socioeconomic impacts.

Keywords