Energies (Mar 2024)

Multi-Objective Optimization Strategy for Fuel Cell Hybrid Electric Trucks Based on Driving Patern Recognition

  • Renzhi Lyu,
  • Zhenpo Wang,
  • Zhaosheng Zhang

DOI
https://doi.org/10.3390/en17061334
Journal volume & issue
Vol. 17, no. 6
p. 1334

Abstract

Read online

Fuel cell hybrid electric trucks have become a cutting-edge field in understanding urban traffic emissions due to their enormous potential in low-carbon areas. In order to improve the economy of fuel cell hybrid electric trucks and reduce the decline of fuel cell lifespan, this paper proposes a multi-objective energy management strategy that optimizes weight coefficients. On the basis of establishing a fuel cell battery hybrid system model, three modes of uniform speed, acceleration, and deceleration were identified through clustering analysis of vehicle speed. Reinforcement learning algorithms were used to learn the corresponding weights for different modes, which reduced the decline in fuel cell life while improving the economic efficiency. The simulation results indicate that, under the conditions of no load, half load, and full load, the truck only sacrificed 0.9–5.6%, 1.7–2.6%, and 1.2–1.6% SOC, saving 5.7–6.45%, 5.9–6.67%, and 6.1–6.67% in lifespan loss, and reducing hydrogen consumption by 3.0–7.1%, 2.8–4.4%, and 1.0–3.0%, respectively.

Keywords